Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
A Practical Guide to Trusted Computing

Buy
Use Trusted Computing to Make PCs Safer, More Secure, and More Reliable

 

Every year, computer security threats become more severe. Software alone can no longer adequately defend against them: what’s needed is secure hardware. The Trusted Platform Module (TPM) makes that possible by providing a complete, open industry standard for implementing trusted computing hardware subsystems in PCs. Already available from virtually every leading PC manufacturer, TPM gives software professionals powerful new ways to protect their customers. Now, there’s a start-to-finish guide for every software professional and security specialist who wants to utilize this breakthrough security technology.

 

Authored by innovators who helped create TPM and implement its leading-edge products, this practical book covers all facets of TPM technology: what it can achieve, how it works, and how to write applications for it. The authors offer deep, real-world insights into both TPM and the Trusted Computing Group (TCG) Software Stack. Then, to demonstrate how TPM can solve many of today’s most challenging security problems, they present four start-to-finish case studies, each with extensive C-based code examples.

 

Coverage includes

  • What services and capabilities are provided by TPMs
  • TPM device drivers: solutions for code running in BIOS, TSS stacks for new operating systems, and memory-constrained environments
  • Using TPM to enhance the security of a PC’s boot sequence
  • Key management, in depth: key creation, storage, loading, migration, use, symmetric keys, and much more
  • Linking PKCS#11 and TSS stacks to support applications with middleware services
  • What you need to know about TPM and privacy--including how to avoid privacy problems
  • Moving from TSS 1.1 to the new TSS 1.2 standard
  • TPM and TSS command references and a complete function library

 About the Author


David Challener went to work for IBM in East Fishkill after graduating with his Ph.D. in Applied Mathematics from the University of Illinois, (Urbana-Champaign). After helping design the first TPM (representing IBM), he became chair of the TCG TSS committee. When the IBM PC division was sold to Lenovo, he became a Lenovo employee, where he has represented the company on the TCG Technical Committee, TPM workgroup, and many other groups, while continuing to chair the TSS committee. Currently he is the Lenovo Board Member for TCG.

 

Kent Yoder has been working for the IBM Linux® Technology Center since graduating from Purdue University with a degree in Computer Science in 2001. He has represented IBM on the TCG TSS committee and has helped write and maintain TrouSerS, an open-source TSS library that implements the TSS software specification for the TCG TPM hardware.

 

Ryan Catherman was a member of the Trusted Computing Group, including active memberships in the TSS and TPM working groups while employed at IBM. He was also coauthor of the IBM implementation of Trusted Computing software at its inception and originator of Unix versions of this software. Currently, he works for Opsware Incorporated, a recent HP acquisition, and holds a masters degree in Computer Engineering.

 

David Safford is a researcher at IBM’s T. J. Watson Research Center in Hawthorne, New York. There he has led security research in numerous areas, including ethical hacking, threat analysis, security engineering, intrusion detection sensors, vulnerability scanning, cryptography, and operating system security. Prior to coming to IBM in 1996, he was Director of Supercomputing and Networking at Texas A&M University, and an A-7 pilot in the United States Navy.

 

Leendert van Doorn is a Senior Fellow at AMD where he runs the software technology office. Before joining AMD he was a senior manager at IBM’s T.J. Watson Research Center, where he managed the secure systems and security analysis departments. He received his Ph.D. from the Vrije Universiteit in Amsterdam where he worked on the design and implementation of microkernels. Nowadays his interests are in managed runtime systems, accelerated computing (AMD’s name for heterogenous and homogenous manycore computing), security, and virtualization. In his former job at IBM he worked on FIPS 140-2 level 4 physically secure coprocessors, trusted systems, and virtualization. He was also actively involved in IBM’s virtualization strategy, created and lead IBM’s secure hypervisor and trusted virtual data center initiatives, and was on the board of directors for the Trusted Computing Group. Despite all these distractions, he continued to contribute code to the Xen open-source hypervisor, such as the integrated support code for AMD-V and Intel®VT-x. When conference calls and meetings are getting too much for him, he is known to find refuge at CMU.

 

(HTML tags aren't allowed.)

Extreme programming adventures in C#
Extreme programming adventures in C#

See eXtreme Programming (XP) in action at the hands of an XP mater—and learn Microsoft .NET and C# programming in the process! In this fast-paced, hands-on exposition, Ron Jeffries—one of the leading voices and practitioner in the XP community—demonstrates that you can write well-designed, resilient code incrementally and...

Office-Based Cosmetic Procedures and Techniques
Office-Based Cosmetic Procedures and Techniques

This is a multi-authored textbook that is simple, practical, and up-to-date and supported by instructional videos for cosmetic procedures that can be performed in an office setting. The focus of the book is on fillers, neurotoxins, and various laser, broad band light, radio-frequency, and ultrasound devices that are currently being used or...

Clustering (IEEE Press Series on Computational Intelligence)
Clustering (IEEE Press Series on Computational Intelligence)
Clustering has become an increasingly important topic in recent years, caused by the glut of data from a wide variety of disciplines. However, due to the lack of good communication among these communities, similar theories or algorithms are redeveloped many times, causing unnecessary waste of time and resources. Furthermore, different terminologies...

Hands-On Machine Learning for Algorithmic Trading: Design and implement investment strategies based on smart algorithms that learn from data using Python
Hands-On Machine Learning for Algorithmic Trading: Design and implement investment strategies based on smart algorithms that learn from data using Python

Explore effective trading strategies in real-world markets using NumPy, spaCy, pandas, scikit-learn, and Keras

Key Features

  • Implement machine learning algorithms to build, train, and validate algorithmic models
  • Create your own algorithmic design process to apply...
Problems and Solutions in Organic Chemistry, 1/e
Problems and Solutions in Organic Chemistry, 1/e
Please Read Notes: Brand New, International Softcover Edition, Printed in black and white pages, minor self wear on the cover or pages, Sale restriction may be printed on the book, but Book name, contents, and author are exactly same as Hardcover Edition. Fast delivery through DHL/FedEx express....
C# in Depth: What you need to master C# 2 and 3
C# in Depth: What you need to master C# 2 and 3
C# in Depth is a completely new book designed to propel existing C# developers to a higher level of programming skill. One simple principle drives this book: explore a few things deeply rather than offer a shallow view of the whole C# landscape. If you often find yourself wanting just a little more at the end of a typical chapter, this is...
©2021 LearnIT (support@pdfchm.net) - Privacy Policy