Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Advanced Deep Learning with Keras: Apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more

Buy

A comprehensive guide to advanced deep learning techniques, including autoencoders, GANs, VAEs, and deep reinforcement learning that drive today's most impressive AI results

Key Features

  • Explore the most advanced deep learning techniques that drive modern AI results
  • Implement deep neural networks, autoencoders, GANs, VAEs, and deep reinforcement learning
  • A wide study of GANs, including Improved GANs, Cross-Domain GANs, and Disentangled Representation GANs

Book Description

Recent developments in deep learning, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Deep Reinforcement Learning (DRL) are creating impressive AI results in our news headlines - such as AlphaGo Zero beating world chess champions, and generative AI that can create art paintings that sell for over $400k because they are so human-like.

Advanced Deep Learning with Keras is a comprehensive guide to the advanced deep learning techniques available today, so you can create your own cutting-edge AI. Using Keras as an open-source deep learning library, you'll find hands-on projects throughout that show you how to create more effective AI with the latest techniques.

The journey begins with an overview of MLPs, CNNs, and RNNs, which are the building blocks for the more advanced techniques in the book. You’ll learn how to implement deep learning models with Keras and TensorFlow, and move forwards to advanced techniques, as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You then learn all about GANs, and how they can open new levels of AI performance. Next, you’ll get up to speed with how VAEs are implemented, and you’ll see how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans - a major stride forward for modern AI. To complete this set of advanced techniques, you'll learn how to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.

What you will learn

  • Cutting-edge techniques in human-like AI performance
  • Implement advanced deep learning models using Keras
  • The building blocks for advanced techniques - MLPs, CNNs, and RNNs
  • Deep neural networks – ResNet and DenseNet
  • Autoencoders and Variational AutoEncoders (VAEs)
  • Generative Adversarial Networks (GANs) and creative AI techniques
  • Disentangled Representation GANs, and Cross-Domain GANs
  • Deep reinforcement learning methods and implementation
  • Produce industry-standard applications using OpenAI Gym
  • Deep Q-Learning and Policy Gradient Methods

Who this book is for

Some fluency with Python is assumed. As an advanced book, you'll be familiar with some machine learning approaches, and some practical experience with DL will be helpful. Knowledge of Keras or TensorFlow is not required but would be helpful.

Table of Contents

  1. Introducing Advanced Deep Learning with Keras
  2. Deep Neural Networks
  3. Autoencoders
  4. Generative Adversarial Network (GANs)
  5. Improved GANs
  6. Disentangled Representation GANs
  7. Cross-Domain GANs
  8. Variational Autoencoders (VAEs)
  9. Deep Reinforcement Learning
  10. Policy Gradient Methods
(HTML tags aren't allowed.)

Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python
Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python
Learn how to use TensorFlow 2.0 to build machine learning and deep learning models with complete examples. 

The book begins with introducing TensorFlow 2.0 framework and the major changes from its last release. Next, it focuses on building Supervised Machine Learning models using TensorFlow 2.0.
...
Algorithms in a Nutshell: A Practical Guide
Algorithms in a Nutshell: A Practical Guide

Creating robust software requires the use of efficient algorithms, but programmers seldom think about them until a problem occurs. This updated edition of Algorithms in a Nutshell describes a large number of existing algorithms for solving a variety of problems, and helps you select and implement the right algorithm for your...

Python Data Analysis
Python Data Analysis

Key Features

  • Find, manipulate, and analyze your data using the Python 3.5 libraries
  • Perform advanced, high-performance linear algebra and mathematical calculations with clean and efficient Python code
  • An easy-to-follow guide with realistic examples that are frequently used in real-world data...

Deep Learning Essentials: Your hands-on guide to the fundamentals of deep learning and neural network modeling
Deep Learning Essentials: Your hands-on guide to the fundamentals of deep learning and neural network modeling

Get to grips with the essentials of deep learning by leveraging the power of Python

Key Features

  • Your one-stop solution to get started with the essentials of deep learning and neural network modeling
  • Train different kinds of neural networks to tackle various problems in...
Python Deep Learning: Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow, 2nd Edition
Python Deep Learning: Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow, 2nd Edition

Learn advanced state-of-the-art deep learning techniques and their applications using popular Python libraries

Key Features

  • Build a strong foundation in neural networks and deep learning with Python libraries
  • Explore advanced deep learning techniques and their applications...
Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed Examples in Python Using TensorFlow and Kivy
Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed Examples in Python Using TensorFlow and Kivy
Deploy deep learning applications into production across multiple platforms. You will work on computer vision applications that use the convolutional neural network (CNN) deep learning model and Python. This book starts by explaining the traditional machine-learning pipeline, where you will...
©2019 LearnIT (support@pdfchm.net) - Privacy Policy