Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Advanced Deep Learning with Keras: Apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more

Buy

A comprehensive guide to advanced deep learning techniques, including autoencoders, GANs, VAEs, and deep reinforcement learning that drive today's most impressive AI results

Key Features

  • Explore the most advanced deep learning techniques that drive modern AI results
  • Implement deep neural networks, autoencoders, GANs, VAEs, and deep reinforcement learning
  • A wide study of GANs, including Improved GANs, Cross-Domain GANs, and Disentangled Representation GANs

Book Description

Recent developments in deep learning, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Deep Reinforcement Learning (DRL) are creating impressive AI results in our news headlines - such as AlphaGo Zero beating world chess champions, and generative AI that can create art paintings that sell for over $400k because they are so human-like.

Advanced Deep Learning with Keras is a comprehensive guide to the advanced deep learning techniques available today, so you can create your own cutting-edge AI. Using Keras as an open-source deep learning library, you'll find hands-on projects throughout that show you how to create more effective AI with the latest techniques.

The journey begins with an overview of MLPs, CNNs, and RNNs, which are the building blocks for the more advanced techniques in the book. You’ll learn how to implement deep learning models with Keras and TensorFlow, and move forwards to advanced techniques, as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You then learn all about GANs, and how they can open new levels of AI performance. Next, you’ll get up to speed with how VAEs are implemented, and you’ll see how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans - a major stride forward for modern AI. To complete this set of advanced techniques, you'll learn how to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.

What you will learn

  • Cutting-edge techniques in human-like AI performance
  • Implement advanced deep learning models using Keras
  • The building blocks for advanced techniques - MLPs, CNNs, and RNNs
  • Deep neural networks – ResNet and DenseNet
  • Autoencoders and Variational AutoEncoders (VAEs)
  • Generative Adversarial Networks (GANs) and creative AI techniques
  • Disentangled Representation GANs, and Cross-Domain GANs
  • Deep reinforcement learning methods and implementation
  • Produce industry-standard applications using OpenAI Gym
  • Deep Q-Learning and Policy Gradient Methods

Who this book is for

Some fluency with Python is assumed. As an advanced book, you'll be familiar with some machine learning approaches, and some practical experience with DL will be helpful. Knowledge of Keras or TensorFlow is not required but would be helpful.

Table of Contents

  1. Introducing Advanced Deep Learning with Keras
  2. Deep Neural Networks
  3. Autoencoders
  4. Generative Adversarial Network (GANs)
  5. Improved GANs
  6. Disentangled Representation GANs
  7. Cross-Domain GANs
  8. Variational Autoencoders (VAEs)
  9. Deep Reinforcement Learning
  10. Policy Gradient Methods
(HTML tags aren't allowed.)

Introduction to Deep Learning Business Applications for Developers: From Conversational Bots in Customer Service to Medical Image Processing
Introduction to Deep Learning Business Applications for Developers: From Conversational Bots in Customer Service to Medical Image Processing
Discover the potential applications, challenges, and opportunities of deep learning from a business perspective with technical examples. These applications include image recognition, segmentation and annotation, video processing and annotation, voice recognition, intelligent personal assistants, automated translation, and...
The Full Stack Developer: Your Essential Guide to the Everyday Skills Expected of a Modern Full Stack Web Developer
The Full Stack Developer: Your Essential Guide to the Everyday Skills Expected of a Modern Full Stack Web Developer

Understand the technical foundations, as well as the non-programming skills needed to be a successful full stack web developer. This book reveals the reasons why a truly successful full stack developer does more than write code. 

You will learn the principles of the topics needed to help a developer new to agile or full
...
Python Robotics Projects: Build smart and collaborative robots using Python
Python Robotics Projects: Build smart and collaborative robots using Python

Leverage the power of Python to build DIY robotic projects

Key Features

  • Design, build, and stimulate collaborative robots
  • Build high-end robotics projects such as a customized personal Jarvis
  • Leverage the power of Python and ROS for DIY robotic...

Building Intelligent Systems: A Guide to Machine Learning Engineering
Building Intelligent Systems: A Guide to Machine Learning Engineering
Produce a fully functioning Intelligent System that leverages machine learning and data from user interactions to improve over time and achieve success.


This book teaches you how to build an Intelligent System from end to end and leverage machine learning in practice. You will understand how to apply your
...
Practical Data Science: A Guide to Building the Technology Stack for Turning Data Lakes into Business Assets
Practical Data Science: A Guide to Building the Technology Stack for Turning Data Lakes into Business Assets
Learn how to build a data science technology stack and perform good data science with repeatable methods. You will learn how to turn data lakes into business assets.

The data science technology stack demonstrated in Practical Data Science is built from components in general use in the industry. Data...
Artificial Intelligence and Machine Learning Fundamentals: Develop real-world applications powered by the latest AI advances
Artificial Intelligence and Machine Learning Fundamentals: Develop real-world applications powered by the latest AI advances

Create AI applications in Python and lay the foundations for your career in data science

Key Features

  • Practical examples that explain key machine learning algorithms
  • Explore neural networks in detail with interesting examples
  • Master core AI concepts with...
©2019 LearnIT (support@pdfchm.net) - Privacy Policy