Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Big Data Analysis with Python: Combine Spark and Python to unlock the powers of parallel computing and machine learning

Buy

Get to grips with processing large volumes of data and presenting it as engaging, interactive insights using Spark and Python.

Key Features

  • Get a hands-on, fast-paced introduction to the Python data science stack
  • Explore ways to create useful metrics and statistics from large datasets
  • Create detailed analysis reports with real-world data

Book Description

Processing big data in real time is challenging due to scalability, information inconsistency, and fault tolerance. Big Data Analysis with Python teaches you how to use tools that can control this data avalanche for you. With this book, you'll learn practical techniques to aggregate data into useful dimensions for posterior analysis, extract statistical measurements, and transform datasets into features for other systems.

The book begins with an introduction to data manipulation in Python using pandas. You'll then get familiar with statistical analysis and plotting techniques. With multiple hands-on activities in store, you'll be able to analyze data that is distributed on several computers by using Dask. As you progress, you'll study how to aggregate data for plots when the entire data cannot be accommodated in memory. You'll also explore Hadoop (HDFS and YARN), which will help you tackle larger datasets. The book also covers Spark and explains how it interacts with other tools.

By the end of this book, you'll be able to bootstrap your own Python environment, process large files, and manipulate data to generate statistics, metrics, and graphs.

What you will learn

  • Use Python to read and transform data into different formats
  • Generate basic statistics and metrics using data on disk
  • Work with computing tasks distributed over a cluster
  • Convert data from various sources into storage or querying formats
  • Prepare data for statistical analysis, visualization, and machine learning
  • Present data in the form of effective visuals

Who this book is for

Big Data Analysis with Python is designed for Python developers, data analysts, and data scientists who want to get hands-on with methods to control data and transform it into impactful insights. Basic knowledge of statistical measurements and relational databases will help you to understand various concepts explained in this book.

Table of Contents

  1. The Python Data Science Stack
  2. Statistical Visualizations
  3. Working with Big Data Frameworks
  4. Diving Deeper with Spark
  5. Handling Missing Values and Correlation Analysis
  6. Exploratory Data Analysis
  7. Reproducibility in Big Data Analysis
  8. Creating a Full Analysis Report
(HTML tags aren't allowed.)

Data Science Algorithms in a Week: Top 7 algorithms for scientific computing, data analysis, and machine learning, 2nd Edition
Data Science Algorithms in a Week: Top 7 algorithms for scientific computing, data analysis, and machine learning, 2nd Edition

Build a strong foundation of machine learning algorithms in 7 days

Key Features

  • Use Python and its wide array of machine learning libraries to build predictive models
  • Learn the basics of the 7 most widely used machine learning algorithms within a week
  • Know...
Software Architect's Handbook: Become a successful software architect by implementing effective architecture concepts
Software Architect's Handbook: Become a successful software architect by implementing effective architecture concepts

A comprehensive guide to exploring software architecture concepts and implementing best practices

Key Features

  • Enhance your skills to grow your career as a software architect
  • Design efficient software architectures using patterns and best practices
  • Learn...
Expert Python Programming: Become a master in Python by learning coding best practices and advanced programming concepts in Python 3.7, 3rd Edition
Expert Python Programming: Become a master in Python by learning coding best practices and advanced programming concepts in Python 3.7, 3rd Edition

Refine your Python programming skills and build professional grade applications with this comprehensive guide

Key Features

  • Create manageable code that can run in various environments with different sets of dependencies
  • Implement effective Python data structures and...

Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition
Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition

An easy-to-follow, step-by-step guide for getting to grips with the real-world application of machine learning algorithms

Key Features

  • Explore statistics and complex mathematics for data-intensive applications
  • Discover new developments in EM algorithm, PCA, and bayesian...
Hands-On Cybersecurity for Architects: Plan and design robust security architectures
Hands-On Cybersecurity for Architects: Plan and design robust security architectures

Gain practical experience of creating security solutions and designing secure, highly available, and dynamic infrastructure for your organization

Key Features

  • Architect complex security structures using standard practices and use cases
  • Integrate security with any...
Mastering Reverse Engineering: Re-engineer your ethical hacking skills
Mastering Reverse Engineering: Re-engineer your ethical hacking skills

Implement reverse engineering techniques to analyze software, exploit software targets, and defend against security threats like malware and viruses.

Key Features

  • Analyze and improvise software and hardware with real-world examples
  • Learn advanced debugging and patching...
©2019 LearnIT (support@pdfchm.net) - Privacy Policy