Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Computer Vision Metrics: Survey, Taxonomy, and Analysis

Buy

Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point detectors and feature descriptors actually work, how they are designed, with observations about tuning the methods for achieving robustness and invariance targets for specific applications. The survey is broader than it is deep, with over 540 references provided to dig deeper. The taxonomy includes search methods, spectra components, descriptor representation, shape, distance functions, accuracy, efficiency, robustness and invariance attributes, and more. Rather than providing ‘how-to’ source code examples and shortcuts, this book provides a counterpoint discussion to the many fine opencv community source code resources available for hands-on practitioners.

What you’ll learn

  • Interest point & descriptor concepts (interest points, corners, ridges, blobs, contours, edges, maxima), interest point tuning and culling, interest point methods (Laplacian, LOG, Moravic, Harris, Harris-Stephens, Shi-Tomasi, Hessian, difference of Gaussians, salient regions, MSER, SUSAN, FAST, FASTER, AGHAST, local curvature, morphological regions, and more), descriptor concepts (shape, sampling pattern, spectra, gradients, binary patterns, basis features), feature descriptor families.
  • Local binary descriptors (LBP, LTP, FREAK, ORB, BRISK, BRIEF, CENSUS, and more).
  • Gradient descriptors (SIFT, SIFT-PCA, SIFT-SIFER, SIFT-GLOH, Root SIFT, CensureE, STAR, HOG, PHOG, DAISY, O-DAISY, CARD, RFM, RIFF-CHOG, LGP, and more).
  • Shape descriptors (Image moments, area, perimeter, centroid, D-NETS, chain codes, Fourier descriptors, wavelets, and more) texture descriptors, structural and statistical (Harallick, SDM, extended SDM, edge metrics, Laws metrics, RILBP, and more).
  • 3D descriptors for depth-based, volumetric, and activity recognition spatio-temporal data sets (3D HOG, HON 4D, 3D SIFT, LBP-TOP, VLBP, and more).
  • Basis space descriptors (Zernike moments, KL, SLANT, steerable filter basis sets, sparse coding, codebooks, descriptor vocabularies, and more), HAAR methods (SURF, USURF, MUSURF, GSURF, Viola Jones, and more), descriptor-based image reconstruction.
  • Distance functions (Euclidean, SAD, SSD, correlation, Hellinger, Manhattan, Chebyshev, EMD, Wasserstein, Mahalanobis, Bray-Curtis, Canberra, L0, Hamming, Jaccard), coordinate spaces, robustness and invariance criteria.
  • Image formation, includes CCD and CMOS sensors for 2D and 3D imaging, sensor processing topics, with a survey identifying over fourteen (14) 3D depth sensing methods, with emphasis on stereo, MVS, and structured light.
  • Image pre-processing methods, examples are provided targeting specific feature descriptor families (point, line and area methods, basis space methods), colorimetry (CIE, HSV, RGB, CAM02, gamut mapping, and more).
  • Ground truth data, some best-practices and examples are provided, with a survey of real and synthetic datasets.
  • Vision pipeline optimizations, mapping algorithms to compute resources (CPU, GPU, DSP, and more), hypothetical high-level vision pipeline examples (face recognition, object recognition, image classification, augmented reality), optimization alternatives with consideration for performance and power to make effective use of SIMD, VLIW, kernels, threads, parallel languages, memory, and more.
  • Synthetic interest point alphabet analysis against 10 common opencv detectors to develop intuition about how different classes of detectors actually work (SIFT, SURF, BRISK, FAST, HARRIS, GFFT, MSER, ORB, STAR, SIMPLEBLOB). Source code provided online.
  • Visual learning concepts, although not the focus of this book, a light introduction is provided to machine learning and statistical learning topics, such as convolutional networks, neural networks, classification and training, clustering and error minimization methods (SVM,’s, kernel machines, KNN, RANSAC, HMM, GMM, LM, and more). Ample references are provided to dig deeper.

Who this book is for

Engineers, scientists, and academic researchers in areas including media processing, computational photography, video analytics, scene understanding, machine vision, face recognition, gesture recognition, pattern recognition and general object analysis.

Table of Contents

Chapter 1. Image Capture and Representation

Chapter 2. Image Pre-Processing

Chapter 3. Global and Regional Features

Chapter 4. Local Feature Design Concepts, Classification, and Learning

Chapter 5. Taxonomy Of Feature Description Attributes

Chapter 6. Interest Point Detector and Feature Descriptor Survey

Chapter 7. Ground Truth Data, Data, Metrics, and Analysis

Chapter 8. Vision Pipelines and Optimizations

Appendix A. Synthetic Feature Analysis

Appendix B. Survey of Ground Truth Datasets

Appendix C. Imaging and Computer Vision Resources

Appendix D. Extended SDM Metrics

 

(HTML tags aren't allowed.)

Designing Machine Learning Systems with Python
Designing Machine Learning Systems with Python

Design efficient machine learning systems that give you more accurate results

About This Book

  • Gain an understanding of the machine learning design process
  • Optimize machine learning systems for improved accuracy
  • Understand common programming tools and techniques for machine...
IoT, AI, and Blockchain for .NET: Building a Next-Generation Application from the Ground Up
IoT, AI, and Blockchain for .NET: Building a Next-Generation Application from the Ground Up
Create applications using Industry 4.0. Discover how artificial intelligence (AI) and machine learning (ML) capabilities can be enhanced using the Internet of things (IoT) and secured using Blockchain, so your latest app can be not just smarter but also more connected and more secure than ever before. This book covers the latest...
The Maker's Manual: A Practical Guide to the New Industrial Revolution
The Maker's Manual: A Practical Guide to the New Industrial Revolution

The Maker's Manual is a practical and comprehensive guide to becoming a hero of the new industrial revolution. It features dozens of color images, techniques to transform your ideas into physical projects, and must-have skills like electronics prototyping, 3d printing, and programming. This book's clear, precise explanations will help...


Emerging Epidemics: Management and Control
Emerging Epidemics: Management and Control

A global perspective on the management and prevention of emerging and re-emerging diseases

Emerging infectious diseases are newly identified or otherwise previously unknown infections that cause public health challenges. Re-emerging infectious diseases are due to both the reappearance of and an increase in the number of...

The Big Bing: Black Holes of Time Management, Gaseous Executive Bodies, Exploding Careers, and Other Theories on the Origins of the Business Universe
The Big Bing: Black Holes of Time Management, Gaseous Executive Bodies, Exploding Careers, and Other Theories on the Origins of the Business Universe

For twenty years, Stanley Bing has offered insight, wisdom, and advice from inside the belly of one of the great corporate beasts. In one essential volume, here is all you need to know to master your career, your life, and, when necessary, other weaker life forms.

Bing knows whereof he speaks. He has lived...

Expert Oracle Indexing and Access Paths: Maximum Performance for Your Database
Expert Oracle Indexing and Access Paths: Maximum Performance for Your Database

Speed up the execution of important database queries by making good choices about which indexes to create. Choose correct index types for different scenarios. Avoid indexing pitfalls that can actually have indexes hurting performance rather than helping. Maintain indexes so as to provide consistent and predictable query response over...

©2019 LearnIT (support@pdfchm.net) - Privacy Policy