Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Data Mining: Concepts, Models, Methods, and Algorithms, Second Edition

Buy
Now updated—the systematic introductory guide to modern analysis of large data sets

As data sets continue to grow in size and complexity, there has been an inevitable move towards indirect, automatic, and intelligent data analysis in which the analyst works via more complex and sophisticated software tools. This book reviews state-of-the-art methodologies and techniques for analyzing enormous quantities of raw data in high-dimensional data spaces to extract new information for decision-making.

This Second Edition of Data Mining: Concepts, Models, Methods, and Algorithms discusses data mining principles and then describes representative state-of-the-art methods and algorithms originating from different disciplines such as statistics, machine learning, neural networks, fuzzy logic, and evolutionary computation. Detailed algorithms are provided with necessary explanations and illustrative examples, and questions and exercises for practice at the end of each chapter. This new edition features the following new techniques/methodologies:

  • Support Vector Machines (SVM)—developed based on statistical learning theory, they have a large potential for applications in predictive data mining

  • Kohonen Maps (Self-Organizing Maps - SOM)—one of very applicative neural-networks-based methodologies for descriptive data mining and multi-dimensional data visualizations

  • DBSCAN, BIRCH, and distributed DBSCAN clustering algorithms—representatives of an important class of density-based clustering methodologies

  • Bayesian Networks (BN) methodology often used for causality modeling

  • Algorithms for measuring Betweeness and Centrality parameters in graphs, important for applications in mining large social networks

  • CART algorithm and Gini index in building decision trees

  • Bagging & Boosting approaches to ensemble-learning methodologies, with details of AdaBoost algorithm

  • Relief algorithm, one of the core feature selection algorithms inspired by instance-based learning

  • PageRank algorithm for mining and authority ranking of web pages

  • Latent Semantic Analysis (LSA) for text mining and measuring semantic similarities between text-based documents

  • New sections on temporal, spatial, web, text, parallel, and distributed data mining

  • More emphasis on business, privacy, security, and legal aspects of data mining technology

This text offers guidance on how and when to use a particular software tool (with the companion data sets) from among the hundreds offered when faced with a data set to mine. This allows analysts to create and perform their own data mining experiments using their knowledge of the methodologies and techniques provided. The book emphasizes the selection of appropriate methodologies and data analysis software, as well as parameter tuning. These critically important, qualitative decisions can only be made with the deeper understanding of parameter meaning and its role in the technique that is offered here.

This volume is primarily intended as a data-mining textbook for computer science, computer engineering, and computer information systems majors at the graduate level. Senior students at the undergraduate level and with the appropriate background can also successfully comprehend all topics presented here.

(HTML tags aren't allowed.)

R and Data Mining: Examples and Case Studies
R and Data Mining: Examples and Case Studies
This book guides R users into data mining and helps data miners who use R in their work. It provides a how-to method using R for data mining applications from academia to industry. It
  • Presents an introduction into using R for data mining applications, covering most popular data mining techniques
  • ...
Approximation Algorithms
Approximation Algorithms
Covering the basic techniques used in the latest research work, the author consolidates progress made so far, including some very recent and promising results, and conveys the beauty and excitement of work in the field. He gives clear, lucid explanations of key results and ideas, with intuitive proofs, and provides critical examples and numerous...
Introduction to the Design and Analysis of Algorithms (3rd Edition)
Introduction to the Design and Analysis of Algorithms (3rd Edition)
Based on a new classification of algorithm design techniques and a clear delineation of analysis methods, Introduction to the Design and Analysis of Algorithms presents the subject in a coherent and innovative manner. Written in a student-friendly style, the book emphasizes the understanding of ideas over excessively formal...

Graphs, Networks and Algorithms (Algorithms and Computation in Mathematics)
Graphs, Networks and Algorithms (Algorithms and Computation in Mathematics)
This new third edition has again been thoroughly revised, even though the changes are not as extensive as in the second edition. Of course, the general aims of the book have remained the same.

In particular, I have added some additional material, namely two new sections concerning graphical codes (which provides a
...
Data Mining and Statistics for Decision Making
Data Mining and Statistics for Decision Making
Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify...
The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics)

This book describes the important ideas in a variety of fields such as medicine, biology, finance, and marketing in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of colour graphics. It is a valuable resource...

©2019 LearnIT (support@pdfchm.net) - Privacy Policy