Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Data Science Algorithms in a Week: Top 7 algorithms for scientific computing, data analysis, and machine learning, 2nd Edition

Buy

Build a strong foundation of machine learning algorithms in 7 days

Key Features

  • Use Python and its wide array of machine learning libraries to build predictive models
  • Learn the basics of the 7 most widely used machine learning algorithms within a week
  • Know when and where to apply data science algorithms using this guide

Book Description

Machine learning applications are highly automated and self-modifying, and continue to improve over time with minimal human intervention, as they learn from the trained data. To address the complex nature of various real-world data problems, specialized machine learning algorithms have been developed. Through algorithmic and statistical analysis, these models can be leveraged to gain new knowledge from existing data as well.

Data Science Algorithms in a Week addresses all problems related to accurate and efficient data classification and prediction. Over the course of seven days, you will be introduced to seven algorithms, along with exercises that will help you understand different aspects of machine learning. You will see how to pre-cluster your data to optimize and classify it for large datasets. This book also guides you in predicting data based on existing trends in your dataset. This book covers algorithms such as k-nearest neighbors, Naive Bayes, decision trees, random forest, k-means, regression, and time-series analysis.

By the end of this book, you will understand how to choose machine learning algorithms for clustering, classification, and regression and know which is best suited for your problem

What you will learn

  • Understand how to identify a data science problem correctly
  • Implement well-known machine learning algorithms efficiently using Python
  • Classify your datasets using Naive Bayes, decision trees, and random forest with accuracy
  • Devise an appropriate prediction solution using regression
  • Work with time series data to identify relevant data events and trends
  • Cluster your data using the k-means algorithm

Who this book is for

This book is for aspiring data science professionals who are familiar with Python and have a little background in statistics. You'll also find this book useful if you're currently working with data science algorithms in some capacity and want to expand your skill set

Table of Contents

  1. Classification using K Nearest Neighbors
  2. Naive Bayes
  3. Decision Trees
  4. Random Forests
  5. Clustering into K clusters
  6. Regression
  7. Time Series Analysis
  8. Python Reference
  9. Statistics
  10. Glossary of Algorithms and Methods in Data Science
(HTML tags aren't allowed.)

Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition
Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition

An easy-to-follow, step-by-step guide for getting to grips with the real-world application of machine learning algorithms

Key Features

  • Explore statistics and complex mathematics for data-intensive applications
  • Discover new developments in EM algorithm, PCA, and bayesian...
Software Architect's Handbook: Become a successful software architect by implementing effective architecture concepts
Software Architect's Handbook: Become a successful software architect by implementing effective architecture concepts

A comprehensive guide to exploring software architecture concepts and implementing best practices

Key Features

  • Enhance your skills to grow your career as a software architect
  • Design efficient software architectures using patterns and best practices
  • Learn...
Advanced JavaScript: Speed up web development with the powerful features and benefits of JavaScript
Advanced JavaScript: Speed up web development with the powerful features and benefits of JavaScript

Gain a deeper understanding of JavaScript and apply it to build small applications in backend, frontend, and mobile frameworks.

Key Features

  • Explore the new ES6 syntax, the event loop, and asynchronous programming
  • Learn the test-driven development approach when building...

Hands-On RESTful API Design Patterns and Best Practices: Design, develop, and deploy highly adaptable, scalable, and secure RESTful web APIs
Hands-On RESTful API Design Patterns and Best Practices: Design, develop, and deploy highly adaptable, scalable, and secure RESTful web APIs

Build effective RESTful APIs for enterprise with design patterns and REST framework's out-of-the-box capabilities

Key Features

  • Understand advanced topics such as API gateways, API securities, and cloud
  • Implement patterns programmatically with easy-to-follow...
Thoughtful Data Science: A Programmer's Toolset for Data Analysis and Artificial Intelligence with Python, Jupyter Notebook, and PixieDust
Thoughtful Data Science: A Programmer's Toolset for Data Analysis and Artificial Intelligence with Python, Jupyter Notebook, and PixieDust

Bridge the gap between developer and data scientist by creating a modern open-source, Python-based toolset that works with Jupyter Notebook, and PixieDust.

Key Features

  • Think deeply as a developer about your strategy and toolset in data science
  • Discover the best tools that...
Expert Python Programming: Become a master in Python by learning coding best practices and advanced programming concepts in Python 3.7, 3rd Edition
Expert Python Programming: Become a master in Python by learning coding best practices and advanced programming concepts in Python 3.7, 3rd Edition

Refine your Python programming skills and build professional grade applications with this comprehensive guide

Key Features

  • Create manageable code that can run in various environments with different sets of dependencies
  • Implement effective Python data structures and...
©2019 LearnIT (support@pdfchm.net) - Privacy Policy