Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Hands-On Machine Learning for Algorithmic Trading: Design and implement investment strategies based on smart algorithms that learn from data using Python

Buy

Explore effective trading strategies in real-world markets using NumPy, spaCy, pandas, scikit-learn, and Keras

Key Features

  • Implement machine learning algorithms to build, train, and validate algorithmic models
  • Create your own algorithmic design process to apply probabilistic machine learning approaches to trading decisions
  • Develop neural networks for algorithmic trading to perform time series forecasting and smart analytics

Book Description

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies.

This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You'll practice the ML work?ow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies.

Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym.

What you will learn

  • Implement machine learning techniques to solve investment and trading problems
  • Leverage market, fundamental, and alternative data to research alpha factors
  • Design and fine-tune supervised, unsupervised, and reinforcement learning models
  • Optimize portfolio risk and performance using pandas, NumPy, and scikit-learn
  • Integrate machine learning models into a live trading strategy on Quantopian
  • Evaluate strategies using reliable backtesting methodologies for time series
  • Design and evaluate deep neural networks using Keras, PyTorch, and TensorFlow
  • Work with reinforcement learning for trading strategies in the OpenAI Gym

Who this book is for

Hands-On Machine Learning for Algorithmic Trading is for data analysts, data scientists, and Python developers, as well as investment analysts and portfolio managers working within the finance and investment industry. If you want to perform efficient algorithmic trading by developing smart investigating strategies using machine learning algorithms, this is the book for you. Some understanding of Python and machine learning techniques is mandatory.

Table of Contents

  1. Machine Learning for Trading
  2. Market and Fundamental Data
  3. Alternative Data for Finance
  4. Alpha Factor Research
  5. Strategy Evaluation
  6. The Machine Learning Process
  7. Linear Models
  8. Time Series Models
  9. Bayesian Machine Learning
  10. Decision Trees and Random Forests
  11. Gradient Boosting Machines
  12. Unsupervised Learning
  13. Working with Text Data
  14. Topic Modeling
  15. Word Embeddings
  16. Next Steps
(HTML tags aren't allowed.)

Secret Recipes of the Python Ninja: Over 70 recipes that uncover powerful programming tactics in Python
Secret Recipes of the Python Ninja: Over 70 recipes that uncover powerful programming tactics in Python

Test your Python programming skills by solving real-world problems

Key Features

  • Access built-in documentation tools and improve your code.
  • Discover how to make the best use of decorator and generator functions
  • Enhance speed and improve concurrency by...
Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition
Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition

An easy-to-follow, step-by-step guide for getting to grips with the real-world application of machine learning algorithms

Key Features

  • Explore statistics and complex mathematics for data-intensive applications
  • Discover new developments in EM algorithm, PCA, and bayesian...
Python Deep Learning: Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow, 2nd Edition
Python Deep Learning: Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow, 2nd Edition

Learn advanced state-of-the-art deep learning techniques and their applications using popular Python libraries

Key Features

  • Build a strong foundation in neural networks and deep learning with Python libraries
  • Explore advanced deep learning techniques and their applications...

The Blockchain Developer: A Practical Guide for Designing, Implementing, Publishing, Testing, and Securing Distributed Blockchain-based Projects
The Blockchain Developer: A Practical Guide for Designing, Implementing, Publishing, Testing, and Securing Distributed Blockchain-based Projects

Become a Blockchain developer and design, build, publish, test, maintain and secure scalable decentralized Blockchain projects using Bitcoin, Ethereum, NEO, EOS and Hyperledger.  

This book helps you understand Blockchain beyond development and crypto to better harness its power and capability. You will learn...

Artificial Intelligence Basics: A Non-Technical Introduction
Artificial Intelligence Basics: A Non-Technical Introduction

Artificial intelligence touches nearly every part of your day. While you may initially assume that technology such as smart speakers and digital assistants are the extent of it, AI has in fact rapidly become a general-purpose technology, reverberating across industries including transportation, healthcare, financial services, and...

Learning JavaScript Data Structures and Algorithms: Write complex and powerful JavaScript code using the latest ECMAScript, 3rd Edition
Learning JavaScript Data Structures and Algorithms: Write complex and powerful JavaScript code using the latest ECMAScript, 3rd Edition

Create classic data structures and algorithms such as depth-first search and breadth-first search, learn recursion, as well as create and use a heap data structure using JavaScript

Key Features

  • Implement common data structures and the associated algorithms along with the context in which...
©2019 LearnIT (support@pdfchm.net) - Privacy Policy