Graphics in this book are printed in black and white.
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.
By using concrete examples, minimal theory, and two productionready Python frameworks—scikitlearn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started.

Explore the machine learning landscape, particularly neural nets

Use scikitlearn to track an example machinelearning project endtoend

Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods

Use the TensorFlow library to build and train neural nets

Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning

Learn techniques for training and scaling deep neural nets

Apply practical code examples without acquiring excessive machine learning theory or algorithm details