Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Hands-On Reinforcement Learning with Python: Master reinforcement and deep reinforcement learning using OpenAI Gym and TensorFlow

Buy

A hands-on guide enriched with examples to master deep reinforcement learning algorithms with Python

Key Features

  • Enter the world of artificial intelligence using the power of Python
  • An example-rich guide to master various RL and DRL algorithms
  • Explore various state-of-the-art architectures along with math

Book Description

Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence (AI). Hands-On Reinforcement Learning with Python will help you master not only basic reinforcement learning algorithms but also advanced deep reinforcement learning (DRL) algorithms.

The book starts with an introduction to reinforcement learning followed by OpenAI Gym and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov decision process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning.

By the end of this book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence.

What you will learn

  • Understand the basics of RL methods, algorithms, and elements
  • Train an agent to walk using OpenAI Gym and Tensorflow
  • Understand Markov decision process, Bellman's optimality, and temporal difference (TD) learning
  • Solve multi-armed bandit problems using various algorithms
  • Master deep learning algorithms, such as RNN, LSTM, and CNN with applications
  • Build intelligent agents using the DRQN algorithm to play the Doom game
  • Teach agents to play the Lunar Lander game using DDPG
  • Train an agent to win a car racing game using dueling DQN

Who This Book Is For

Hands-On Reinforcement Learning with Python is for machine learning developers and deep learning enthusiasts interested in artificial intelligence and want to learn about reinforcement learning from scratch. Some knowledge of linear algebra, calculus, and the Python programming language will help you understand the concepts covered in this book.

Table of Contents

  1. Introduction to Reinforcement Learning
  2. Getting Started with OpenAI and Tensorflow
  3. Markov Decision Process and Dynamic Programming
  4. Gaming with Monte Carlo Tree Search
  5. Temporal Difference Learning
  6. Multi-Armed Bandit Problem
  7. Deep Learning Fundamentals
  8. Deep Learning and Reinforcement
  9. Playing Doom With Deep Recurrent Q Network
  10. Asynchronous Advantage Actor Critic Network
  11. Policy Gradients and Optimization
  12. Capstone Project Car Racing using DQN
(HTML tags aren't allowed.)

Intelligent Projects Using Python: 9 real-world AI projects leveraging machine learning and deep learning with TensorFlow and Keras
Intelligent Projects Using Python: 9 real-world AI projects leveraging machine learning and deep learning with TensorFlow and Keras

Implement machine learning and deep learning methodologies to build smart, cognitive AI projects using Python

Key Features

  • A go-to guide to help you master AI algorithms and concepts
  • 8 real-world projects tackling different challenges in healthcare, e-commerce, and...
Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python
Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python
Learn how to use TensorFlow 2.0 to build machine learning and deep learning models with complete examples. 

The book begins with introducing TensorFlow 2.0 framework and the major changes from its last release. Next, it focuses on building Supervised Machine Learning models using TensorFlow 2.0.
...
Python Projects for Beginners: A Ten-Week Bootcamp Approach to Python Programming
Python Projects for Beginners: A Ten-Week Bootcamp Approach to Python Programming

Immerse yourself in learning Python and introductory data analytics with this book’s project-based approach. Through the structure of a ten-week coding bootcamp course, you’ll learn key concepts and gain hands-on experience through weekly projects.

Each chapter in this book is presented as a full week of...


TensorFlow 2.0 Quick Start Guide: Get up to speed with the newly introduced features of TensorFlow 2.0
TensorFlow 2.0 Quick Start Guide: Get up to speed with the newly introduced features of TensorFlow 2.0

Perform supervised and unsupervised machine learning and learn advanced techniques such as training neural networks.

Key Features

  • Train your own models for effective prediction, using high-level Keras API
  • Perform supervised and unsupervised machine learning and learn...
Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more
Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more

This practical guide will teach you how deep learning (DL) can be used to solve complex real-world problems.

Key Features

  • Explore deep reinforcement learning (RL), from the first principles to the latest algorithms
  • Evaluate high-profile RL methods, including value...
Hands-On Artificial Intelligence with Java for Beginners: Build intelligent apps using machine learning and deep learning with Deeplearning4j
Hands-On Artificial Intelligence with Java for Beginners: Build intelligent apps using machine learning and deep learning with Deeplearning4j

Build, train, and deploy intelligent applications using Java libraries

Key Features

  • Leverage the power of Java libraries to build smart applications
  • Build and train deep learning models for implementing artificial intelligence
  • Learn various algorithms to...
©2019 LearnIT (support@pdfchm.net) - Privacy Policy