Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Introducing Data Science: Big Data, Machine Learning, and more, using Python tools

Buy

Summary

Introducing Data Science teaches you how to accomplish the fundamental tasks that occupy data scientists. Using the Python language and common Python libraries, you'll experience firsthand the challenges of dealing with data at scale and gain a solid foundation in data science.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the Technology

Many companies need developers with data science skills to work on projects ranging from social media marketing to machine learning. Discovering what you need to learn to begin a career as a data scientist can seem bewildering. This book is designed to help you get started.

About the Book

Introducing Data ScienceIntroducing Data Science explains vital data science concepts and teaches you how to accomplish the fundamental tasks that occupy data scientists. You’ll explore data visualization, graph databases, the use of NoSQL, and the data science process. You’ll use the Python language and common Python libraries as you experience firsthand the challenges of dealing with data at scale. Discover how Python allows you to gain insights from data sets so big that they need to be stored on multiple machines, or from data moving so quickly that no single machine can handle it. This book gives you hands-on experience with the most popular Python data science libraries, Scikit-learn and StatsModels. After reading this book, you’ll have the solid foundation you need to start a career in data science.

What’s Inside

  • Handling large data
  • Introduction to machine learning
  • Using Python to work with data
  • Writing data science algorithms

About the Reader

This book assumes you're comfortable reading code in Python or a similar language, such as C, Ruby, or JavaScript. No prior experience with data science is required.

About the Authors

Davy Cielen, Arno D. B. Meysman, and Mohamed Ali are the founders and managing partners of Optimately and Maiton, where they focus on developing data science projects and solutions in various sectors.

Table of Contents

  1. Data science in a big data world
  2. The data science process
  3. Machine learning
  4. Handling large data on a single computer
  5. First steps in big data
  6. Join the NoSQL movement
  7. The rise of graph databases
  8. Text mining and text analytics
  9. Data visualization to the end user
(HTML tags aren't allowed.)

Deep Learning with Python: A Hands-on Introduction
Deep Learning with Python: A Hands-on Introduction
Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these frameworks is often...
The Vietnam War: The Definitive Illustrated History
The Vietnam War: The Definitive Illustrated History

Created in association with the Smithsonian Institution, this authoritative guide chronicles America's fight against Communism in southeast Asia during the 1960s and 1970s, and comprehensively explores the people, politics, events, and lasting effects of the Vietnam War.

Honoring those who served in the war at home or abroad,...

Docker for Data Science: Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server
Docker for Data Science: Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server
Learn Docker "infrastructure as code" technology to define a system for performing standard but non-trivial data tasks on medium- to large-scale data sets, using Jupyter as the master controller.

It is not uncommon for a real-world data set to fail to be easily managed. The set may not fit well into access memory or
...

TensorFlow for Deep Learning: From Linear Regression to Reinforcement Learning
TensorFlow for Deep Learning: From Linear Regression to Reinforcement Learning

Learn how to solve challenging machine learning problems with TensorFlow, Google’s revolutionary new software library for deep learning. If you have some background in basic linear algebra and calculus, this practical book introduces machine-learning fundamentals by showing you how to design systems capable of detecting objects...

Python: Data Analytics and Visualization
Python: Data Analytics and Visualization

Understand, evaluate, and visualize data About This Book - Learn basic steps of data analysis and how to use Python and its packages - A step-by-step guide to predictive modeling including tips, tricks, and best practices - Effectively visualize a broad set of analyzed data and generate effective results Who This Book Is For This book is for...

Algorithms in a Nutshell: A Practical Guide
Algorithms in a Nutshell: A Practical Guide

Creating robust software requires the use of efficient algorithms, but programmers seldom think about them until a problem occurs. This updated edition of Algorithms in a Nutshell describes a large number of existing algorithms for solving a variety of problems, and helps you select and implement the right algorithm for your...

©2018 LearnIT (support@pdfchm.net) - Privacy Policy