Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition

Buy

An easy-to-follow, step-by-step guide for getting to grips with the real-world application of machine learning algorithms

Key Features

  • Explore statistics and complex mathematics for data-intensive applications
  • Discover new developments in EM algorithm, PCA, and bayesian regression
  • Study patterns and make predictions across various datasets

Book Description

Machine learning has gained tremendous popularity for its powerful and fast predictions with large datasets. However, the true forces behind its powerful output are the complex algorithms involving substantial statistical analysis that churn large datasets and generate substantial insight.

This second edition of Machine Learning Algorithms walks you through prominent development outcomes that have taken place relating to machine learning algorithms, which constitute major contributions to the machine learning process and help you to strengthen and master statistical interpretation across the areas of supervised, semi-supervised, and reinforcement learning. Once the core concepts of an algorithm have been covered, you’ll explore real-world examples based on the most diffused libraries, such as scikit-learn, NLTK, TensorFlow, and Keras. You will discover new topics such as principal component analysis (PCA), independent component analysis (ICA), Bayesian regression, discriminant analysis, advanced clustering, and gaussian mixture.

By the end of this book, you will have studied machine learning algorithms and be able to put them into production to make your machine learning applications more innovative.

What you will learn

  • Study feature selection and the feature engineering process
  • Assess performance and error trade-offs for linear regression
  • Build a data model and understand how it works by using different types of algorithm
  • Learn to tune the parameters of Support Vector Machines (SVM)
  • Explore the concept of natural language processing (NLP) and recommendation systems
  • Create a machine learning architecture from scratch

Who this book is for

Machine Learning Algorithms is for you if you are a machine learning engineer, data engineer, or junior data scientist who wants to advance in the field of predictive analytics and machine learning. Familiarity with R and Python will be an added advantage for getting the best from this book.

Table of Contents

  1. A Gentle Introduction to Machine Learning
  2. Important Elements in Machine Learning
  3. Feature Selection and Feature Engineering
  4. Regression Algorithms
  5. Linear Classification Algorithms
  6. Naive Bayes and Discriminant Analysis
  7. Support Vector Machines
  8. Decision Trees and Ensemble Learning
  9. Clustering Fundamentals
  10. Advanced Clustering
  11. Hierarchical Clustering
  12. Introducing Recommendation Systems
  13. Introducing Natural Language Processing
  14. Topic Modeling and Sentiment Analysis in NLP
  15. Introducing Neural Networks
  16. Advanced Deep Learning Models
  17. Creating a Machine Learning Architecture
(HTML tags aren't allowed.)

Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python
Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python
Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms...
Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python
Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python
Learn how to use TensorFlow 2.0 to build machine learning and deep learning models with complete examples. 

The book begins with introducing TensorFlow 2.0 framework and the major changes from its last release. Next, it focuses on building Supervised Machine Learning models using TensorFlow 2.0.
...
Python Projects for Beginners: A Ten-Week Bootcamp Approach to Python Programming
Python Projects for Beginners: A Ten-Week Bootcamp Approach to Python Programming

Immerse yourself in learning Python and introductory data analytics with this book’s project-based approach. Through the structure of a ten-week coding bootcamp course, you’ll learn key concepts and gain hands-on experience through weekly projects.

Each chapter in this book is presented as a full week of...


Applied Deep Learning with Python: Use scikit-learn, TensorFlow, and Keras to create intelligent systems and machine learning solutions
Applied Deep Learning with Python: Use scikit-learn, TensorFlow, and Keras to create intelligent systems and machine learning solutions

A hands-on guide to deep learning that's filled with intuitive explanations and engaging practical examples

Key Features

  • Designed to iteratively develop the skills of Python users who don't have a data science background
  • Covers the key foundational concepts...
Success in Programming: How to Gain Recognition, Power, and Influence Through Personal Branding
Success in Programming: How to Gain Recognition, Power, and Influence Through Personal Branding

Why should you, a competent software developer or programmer, care about your own brand? After all, it’s not like you're an actor or musician.

In fact, as Success in Programming: How to Gain Recognition, Power, and Influence Through Personal Branding demonstrates in...

Generative Adversarial Networks Projects: Build next-generation generative models using TensorFlow and Keras
Generative Adversarial Networks Projects: Build next-generation generative models using TensorFlow and Keras

Explore various Generative Adversarial Network architectures using the Python ecosystem

Key Features

  • Use different datasets to build advanced projects in the Generative Adversarial Network domain
  • Implement projects ranging from generating 3D shapes to a face aging...
©2019 LearnIT (support@pdfchm.net) - Privacy Policy