Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition

Buy

An easy-to-follow, step-by-step guide for getting to grips with the real-world application of machine learning algorithms

Key Features

  • Explore statistics and complex mathematics for data-intensive applications
  • Discover new developments in EM algorithm, PCA, and bayesian regression
  • Study patterns and make predictions across various datasets

Book Description

Machine learning has gained tremendous popularity for its powerful and fast predictions with large datasets. However, the true forces behind its powerful output are the complex algorithms involving substantial statistical analysis that churn large datasets and generate substantial insight.

This second edition of Machine Learning Algorithms walks you through prominent development outcomes that have taken place relating to machine learning algorithms, which constitute major contributions to the machine learning process and help you to strengthen and master statistical interpretation across the areas of supervised, semi-supervised, and reinforcement learning. Once the core concepts of an algorithm have been covered, you’ll explore real-world examples based on the most diffused libraries, such as scikit-learn, NLTK, TensorFlow, and Keras. You will discover new topics such as principal component analysis (PCA), independent component analysis (ICA), Bayesian regression, discriminant analysis, advanced clustering, and gaussian mixture.

By the end of this book, you will have studied machine learning algorithms and be able to put them into production to make your machine learning applications more innovative.

What you will learn

  • Study feature selection and the feature engineering process
  • Assess performance and error trade-offs for linear regression
  • Build a data model and understand how it works by using different types of algorithm
  • Learn to tune the parameters of Support Vector Machines (SVM)
  • Explore the concept of natural language processing (NLP) and recommendation systems
  • Create a machine learning architecture from scratch

Who this book is for

Machine Learning Algorithms is for you if you are a machine learning engineer, data engineer, or junior data scientist who wants to advance in the field of predictive analytics and machine learning. Familiarity with R and Python will be an added advantage for getting the best from this book.

Table of Contents

  1. A Gentle Introduction to Machine Learning
  2. Important Elements in Machine Learning
  3. Feature Selection and Feature Engineering
  4. Regression Algorithms
  5. Linear Classification Algorithms
  6. Naive Bayes and Discriminant Analysis
  7. Support Vector Machines
  8. Decision Trees and Ensemble Learning
  9. Clustering Fundamentals
  10. Advanced Clustering
  11. Hierarchical Clustering
  12. Introducing Recommendation Systems
  13. Introducing Natural Language Processing
  14. Topic Modeling and Sentiment Analysis in NLP
  15. Introducing Neural Networks
  16. Advanced Deep Learning Models
  17. Creating a Machine Learning Architecture
(HTML tags aren't allowed.)

Expert Python Programming: Become a master in Python by learning coding best practices and advanced programming concepts in Python 3.7, 3rd Edition
Expert Python Programming: Become a master in Python by learning coding best practices and advanced programming concepts in Python 3.7, 3rd Edition

Refine your Python programming skills and build professional grade applications with this comprehensive guide

Key Features

  • Create manageable code that can run in various environments with different sets of dependencies
  • Implement effective Python data structures and...
Learn to Program with Python 3: A Step-by-Step Guide to Programming
Learn to Program with Python 3: A Step-by-Step Guide to Programming

Move from zero knowledge of programming to comfortably writing small to medium-sized programs in Python. Fully updated for Python 3, with code and examples throughout, the book explains Python coding with an accessible, step-by-step approach designed to bring you comfortably into the world of software development.

...
Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks
Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks

Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You’ll begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and...


Data Science Algorithms in a Week: Top 7 algorithms for scientific computing, data analysis, and machine learning, 2nd Edition
Data Science Algorithms in a Week: Top 7 algorithms for scientific computing, data analysis, and machine learning, 2nd Edition

Build a strong foundation of machine learning algorithms in 7 days

Key Features

  • Use Python and its wide array of machine learning libraries to build predictive models
  • Learn the basics of the 7 most widely used machine learning algorithms within a week
  • Know...
Deep Learning Essentials: Your hands-on guide to the fundamentals of deep learning and neural network modeling
Deep Learning Essentials: Your hands-on guide to the fundamentals of deep learning and neural network modeling

Get to grips with the essentials of deep learning by leveraging the power of Python

Key Features

  • Your one-stop solution to get started with the essentials of deep learning and neural network modeling
  • Train different kinds of neural networks to tackle various problems in...
Deep Learning for Natural Language Processing: Creating Neural Networks with Python
Deep Learning for Natural Language Processing: Creating Neural Networks with Python
Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models.

You’ll start by covering the mathematical...
©2019 LearnIT (support@pdfchm.net) - Privacy Policy