Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Machine Learning and Security: Protecting Systems with Data and Algorithms

Buy

Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself. With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis.

Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike.

  • Learn how machine learning has contributed to the success of modern spam filters
  • Quickly detect anomalies, including breaches, fraud, and impending system failure
  • Conduct malware analysis by extracting useful information from computer binaries
  • Uncover attackers within the network by finding patterns inside datasets
  • Examine how attackers exploit consumer-facing websites and app functionality
  • Translate your machine learning algorithms from the lab to production
  • Understand the threat attackers pose to machine learning solutions
(HTML tags aren't allowed.)

Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists
Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists

Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you’ll learn techniques for extracting and transforming features—the numeric representations of raw data—into formats for machine-learning models. Each chapter guides you...

Python Web Scraping: Hands-on data scraping and crawling using PyQT, Selnium, HTML and Python, 2nd Edition
Python Web Scraping: Hands-on data scraping and crawling using PyQT, Selnium, HTML and Python, 2nd Edition

Successfully scrape data from any website with the power of Python 3.x

Key Features

  • A hands-on guide to web scraping using Python with solutions to real-world problems
  • Create a number of different web scrapers in Python to extract information
  • This book...
Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems

Graphics in this book are printed in black and white.

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data....


Practical Data Wrangling: Expert techniques for transforming your raw data into a valuable source for analytics
Practical Data Wrangling: Expert techniques for transforming your raw data into a valuable source for analytics

Key Features

  • This easy-to-follow guide takes you through every step of the data wrangling process in the best possible way
  • Work with different types of datasets, and reshape the layout of your data to make it easier for analysis
  • Get simple examples and real-life data...
Scientific Computing with Python 3
Scientific Computing with Python 3

Key Features

  • Your ultimate resource for getting up and running with Python numerical computations
  • Explore numerical computing and mathematical libraries using Python 3.x code with SciPy and NumPy modules
  • A hands-on guide to implementing mathematics with Python, with complete...
MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence
MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence
Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming...
©2019 LearnIT (support@pdfchm.net) - Privacy Policy