Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Machine Learning Using R: With Time Series and Industry-Based Use Cases in R

Buy

Examine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avoiding the effort of learning Python if you are only comfortable with R.

As in the first edition, the authors have kept the fine balance of theory and application of machine learning through various real-world use-cases which gives you a comprehensive collection of topics in machine learning. New chapters in this edition cover time series models and deep learning.

What You'll Learn 
  • Understand machine learning algorithms using R
  • Master the process of building machine-learning models 
  • Cover the theoretical foundations of machine-learning algorithms
  • See industry focused real-world use cases
  • Tackle time series modeling in R
  • Apply deep learning using Keras and TensorFlow in R

Who This Book is For

Data scientists, data science professionals, and researchers in academia who want to understand the nuances of machine-learning approaches/algorithms in practice using R.

(HTML tags aren't allowed.)

Syntax-Based Collocation Extraction (Text, Speech and Language Technology)
Syntax-Based Collocation Extraction (Text, Speech and Language Technology)

Syntax-Based Collocation Extraction is the first book to offer a comprehensive, up-to-date review of the theoretical and applied work on word collocations. Backed by solid theoretical results, the computational experiments described based on data in four languages provide support for the book’s basic argument for using syntax-driven...

Deep Learning with Python: A Hands-on Introduction
Deep Learning with Python: A Hands-on Introduction
Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these frameworks is often...
Applied Natural Language Processing with Python: Implementing Machine Learning and Deep Learning Algorithms for Natural Language Processing
Applied Natural Language Processing with Python: Implementing Machine Learning and Deep Learning Algorithms for Natural Language Processing
Learn to harness the power of AI for natural language processing, performing tasks such as spell check, text summarization, document classification, and natural language generation. Along the way, you will learn the skills to implement these methods in larger infrastructures to replace existing code or create new...

Python Data Science Essentials: A practitioner's guide covering essential data science principles, tools, and techniques, 3rd Edition
Python Data Science Essentials: A practitioner's guide covering essential data science principles, tools, and techniques, 3rd Edition

Gain useful insights from your data using popular data science tools

Key Features

  • A one-stop guide to Python libraries such as pandas and NumPy
  • Comprehensive coverage of data science operations such as data cleaning and data manipulation
  • Choose scalable...
Python Deep Learning Projects: 9 projects demystifying neural network and deep learning models for building intelligent systems
Python Deep Learning Projects: 9 projects demystifying neural network and deep learning models for building intelligent systems

Insightful projects to master deep learning and neural network architectures using Python and Keras

Key Features

  • Explore deep learning across computer vision, natural language processing (NLP), and image processing
  • Discover best practices for the training of deep neural...
Computational Linguistics and Intelligent Text Processing: 12th International Conference, CICLing 2011
Computational Linguistics and Intelligent Text Processing: 12th International Conference, CICLing 2011

CICLing 2011 was the 12th Annual Conference on Intelligent Text Processing and Computational Linguistics. The CICLing conferences provide a wide-scope forum for the discussion of the art and craft of natural language processing research as well as the best practices in its applications.

This set of two books contains four invited...

©2019 LearnIT (support@pdfchm.net) - Privacy Policy