Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Mastering Machine Learning Algorithms: Expert techniques to implement popular machine learning algorithms and fine-tune your models


Explore and master the most important algorithms for solving complex machine learning problems.

Key Features

  • Discover high-performing machine learning algorithms and understand how they work in depth
  • One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation
  • Master concepts related to algorithm tuning, parameter optimization, and more

Book Description

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour.

Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks.

If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.

What you will learn

  • Explore how a ML model can be trained, optimized, and evaluated
  • Understand how to create and learn static and dynamic probabilistic models
  • Successfully cluster high-dimensional data and evaluate model accuracy
  • Discover how artificial neural networks work and how to train, optimize, and validate them
  • Work with Autoencoders and Generative Adversarial Networks
  • Apply label spreading and propagation to large datasets
  • Explore the most important Reinforcement Learning techniques

Who This Book Is For

This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.

Table of Contents

  1. Machine Learning Model Fundamentals
  2. Introduction to Semi-Supervised Learning
  3. Graph-based Semi-Supervised Learning
  4. Bayesian Networks and Hidden Markov Models
  5. EM algorithm and applications
  6. Hebbian Learning
  7. Advanced Clustering and Feature Extraction
  8. Ensemble Learning
  9. Neural Networks for Machine Learning
  10. Advanced Neural Models
  11. Auto-Encoders
  12. Generative Adversarial Networks
  13. Deep Belief Networks
  14. Introduction to Reinforcement Learning
  15. Policy estimation algorithms
(HTML tags aren't allowed.)

Markov Chains (Cambridge Series in Statistical and Probabilistic Mathematics)
Markov Chains (Cambridge Series in Statistical and Probabilistic Mathematics)
In this rigorous account the author studies both discrete-time and continuous-time chains. A distinguishing feature is an introduction to more advanced topics such as martingales and potentials, in the established context of Markov chains. There are applications to simulation, economics, optimal control, genetics, queues and many other topics, and...
Bioinformatics: Sequence Alignment and Markov Models
Bioinformatics: Sequence Alignment and Markov Models

Bioinformatics showcases the latest developments in the field along with all the foundational information you'll need. It provides in-depth coverage of a wide range of autoimmune disorders and detailed analyses of suffix trees, plus late-breaking...

Advanced Signal Processing and Noise Reduction, 2nd Edition
Advanced Signal Processing and Noise Reduction, 2nd Edition

This book presents a broad range of theory and application of statistical signal processing. The emphasis is on digital noise reduction algorithms, particularly important in the field of mobile communication. Vaseghi covers a broad range of applications, including spectral estimation, channel equalization, speech coding over noisy channels,...

Dynamic Speech Models (Synthesis Lectures on Speech and Audio Processing)
Dynamic Speech Models (Synthesis Lectures on Speech and Audio Processing)
In a broad sense, speech dynamics are time-varying or temporal characteristics in all stages of the human speech communication process. This process, sometimes referred to as speech chain [1], starts with the formation of a linguistic message in the speaker’s brain and ends with the arrival of the message in the...
Mastering Probabilistic Graphical Models using Python
Mastering Probabilistic Graphical Models using Python

Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python

About This Book

  • Gain in-depth knowledge of Probabilistic Graphical Models
  • Model time-series problems using Dynamic Bayesian Networks
  • A practical guide to...
Metric Embeddings (de Gruyter Studies in Mathematics)
Metric Embeddings (de Gruyter Studies in Mathematics)

Embeddings of discrete metric spaces into Banach spaces recently became an important tool in computer science and topology. The book will help readers to enter and to work in this very rapidly developing area having many important connections with different parts of mathematics and computer science.

The purpose of the book is to...

©2019 LearnIT (support@pdfchm.net) - Privacy Policy