Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Mastering Machine Learning for Penetration Testing: Develop an extensive skill set to break self-learning systems using Python

Buy

Become a master at penetration testing using machine learning with Python

Key Features

  • Identify ambiguities and breach intelligent security systems
  • Perform unique cyber attacks to breach robust systems
  • Learn to leverage machine learning algorithms

Book Description

Cyber security is crucial for both businesses and individuals. As systems are getting smarter, we now see machine learning interrupting computer security. With the adoption of machine learning in upcoming security products, it's important for pentesters and security researchers to understand how these systems work, and to breach them for testing purposes.

This book begins with the basics of machine learning and the algorithms used to build robust systems. Once you've gained a fair understanding of how security products leverage machine learning, you'll dive into the core concepts of breaching such systems. Through practical use cases, you'll see how to find loopholes and surpass a self-learning security system.

As you make your way through the chapters, you'll focus on topics such as network intrusion detection and AV and IDS evasion. We'll also cover the best practices when identifying ambiguities, and extensive techniques to breach an intelligent system.

By the end of this book, you will be well-versed with identifying loopholes in a self-learning security system and will be able to efficiently breach a machine learning system.

What you will learn

  • Take an in-depth look at machine learning
  • Get to know natural language processing (NLP)
  • Understand malware feature engineering
  • Build generative adversarial networks using Python libraries
  • Work on threat hunting with machine learning and the ELK stack
  • Explore the best practices for machine learning

Who this book is for

This book is for pen testers and security professionals who are interested in learning techniques to break an intelligent security system. Basic knowledge of Python is needed, but no prior knowledge of machine learning is necessary.

Table of Contents

  1. Introduction to Machine Learning in Pentesting
  2. Phishing Domain Detection
  3. Malware Detection with API Calls and PE Headers
  4. Malware Detection with Deep Learning
  5. Botnet Detection with Machine Learning
  6. Machine Learning in Anomaly Detection Systems
  7. Detecting Advanced Persistent Threats
  8. Evading Intrusion Detection Systems with Adversarial Machine Learning
  9. Bypass machine learning malware Detectors
  10. Best Practices for Machine Learning and Feature Engineering
  11. Assessments
(HTML tags aren't allowed.)

Deep Learning Essentials: Your hands-on guide to the fundamentals of deep learning and neural network modeling
Deep Learning Essentials: Your hands-on guide to the fundamentals of deep learning and neural network modeling

Get to grips with the essentials of deep learning by leveraging the power of Python

Key Features

  • Your one-stop solution to get started with the essentials of deep learning and neural network modeling
  • Train different kinds of neural networks to tackle various problems in...
Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition
Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition

An easy-to-follow, step-by-step guide for getting to grips with the real-world application of machine learning algorithms

Key Features

  • Explore statistics and complex mathematics for data-intensive applications
  • Discover new developments in EM algorithm, PCA, and bayesian...
Mastering Reverse Engineering: Re-engineer your ethical hacking skills
Mastering Reverse Engineering: Re-engineer your ethical hacking skills

Implement reverse engineering techniques to analyze software, exploit software targets, and defend against security threats like malware and viruses.

Key Features

  • Analyze and improvise software and hardware with real-world examples
  • Learn advanced debugging and patching...

Hands-On Bitcoin Programming with Python: Build powerful online payment centric applications with Python
Hands-On Bitcoin Programming with Python: Build powerful online payment centric applications with Python

Simplified Python programming for Bitcoin and blockchain

Key Features

  • Build Bitcoin applications in Python with the help of simple examples
  • Mine Bitcoins, program Bitcoin-enabled APIs and transaction graphs, and build trading bots
  • Analyze Bitcoin...
Pro Machine Learning Algorithms: A Hands-On Approach to Implementing Algorithms in Python and R
Pro Machine Learning Algorithms: A Hands-On Approach to Implementing Algorithms in Python and R
Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so...
Deep Learning for Natural Language Processing: Creating Neural Networks with Python
Deep Learning for Natural Language Processing: Creating Neural Networks with Python
Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models.

You’ll start by covering the mathematical...
©2019 LearnIT (support@pdfchm.net) - Privacy Policy