Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Multivariate Time Series Analysis: With R and Financial Applications

Buy

An accessible guide to the multivariate time series tools used in numerous real-world applications

Multivariate Time Series Analysis: With R and Financial Applications is the much anticipated sequel coming from one of the most influential and prominent experts on the topic of time series. Through a fundamental balance of theory and methodology, the book supplies readers with a comprehensible approach to financial econometric models and their applications to real-world empirical research.

Differing from the traditional approach to multivariate time series, the book focuses on reader comprehension by emphasizing structural specification, which results in simplified parsimonious VAR MA modeling. Multivariate Time Series Analysis: With R and Financial Applications utilizes the freely available R software package to explore complex data and illustrate related computation and analyses. Featuring the techniques and methodology of multivariate linear time series, stationary VAR models, VAR MA time series and models, unitroot process, factor models, and factor-augmented VAR models, the book includes:

• Over 300 examples and exercises to reinforce the presented content

• User-friendly R subroutines and research presented throughout to demonstrate modern applications

• Numerous datasets and subroutines to provide readers with a deeper understanding of the material

Multivariate Time Series Analysis is an ideal textbook for graduate-level courses on time series and quantitative finance and upper-undergraduate level statistics courses in time series. The book is also an indispensable reference for researchers and practitioners in business, finance, and econometrics.

(HTML tags aren't allowed.)

Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning
Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning

This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or...

Internet of Things with Arduino Cookbook
Internet of Things with Arduino Cookbook

Key Features

  • This book offers key solutions and advice to address the hiccups faced when working on Arduino-based IoT projects in the real world
  • Take your existing skills and capabilities to the next level by building challenging IoT applications with ease.
  • Be the tech disruptor you always...
Combinatorial Optimization: Theory and Algorithms (Algorithms and Combinatorics)
Combinatorial Optimization: Theory and Algorithms (Algorithms and Combinatorics)

This comprehensive textbook on combinatorial optimization places special emphasis on theoretical results and algorithms with provably good performance, in contrast to heuristics. It is based on numerous courses on combinatorial optimization and specialized topics, mostly at graduate level. This book reviews the...


Data Protection
Data Protection

This is the fundamental truth about data protection: backup is dead.

Or rather, backup and recovery, as a standalone topic, no longer has relevance in IT. As a standalone topic, it’s been killed off by seemingly exponential growth in storage and data, by the cloud, and by virtualization.

So what is data...

Good Habits for Great Coding: Improving Programming Skills with Examples in Python
Good Habits for Great Coding: Improving Programming Skills with Examples in Python

Improve your coding skills and learn how to write readable code. Rather than teach basic programming, this book presumes that readers understand the fundamentals, and offers time-honed best practices for style, design, documenting, testing, refactoring, and more. 

Taking an informal, conversational tone,...

Bayesian Networks in R: with Applications in Systems Biology (Use R!)
Bayesian Networks in R: with Applications in Systems Biology (Use R!)
While there have been significant advances in capturing data from the entities across complex real-world systems, their associations and relationships are largely unknown. Associations between the entities may reveal interesting system-level properties that may not be apparent otherwise. Often these associations are hypothesized...
©2019 LearnIT (support@pdfchm.net) - Privacy Policy