Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Next-Generation Big Data: A Practical Guide to Apache Kudu, Impala, and Spark

Buy

Utilize this practical and easy-to-follow guide to modernize traditional enterprise data warehouse and business intelligence environments with next-generation big data technologies.

Next-Generation Big Data takes a holistic approach, covering the most important aspects of modern enterprise big data. The book covers not only the main technology stack but also the next-generation tools and applications used for big data warehousing, data warehouse optimization, real-time and batch data ingestion and processing, real-time data visualization, big data governance, data wrangling, big data cloud deployments, and distributed in-memory big data computing. Finally, the book has an extensive and detailed coverage of big data case studies from Navistar, Cerner, British Telecom, Shopzilla, Thomson Reuters, and Mastercard.

What You’ll Learn

  • Install Apache Kudu, Impala, and Spark to modernize enterprise data warehouse and business intelligence environments, complete with real-world, easy-to-follow examples, and practical advice
  • Integrate HBase, Solr, Oracle, SQL Server, MySQL, Flume, Kafka, HDFS, and Amazon S3 with Apache Kudu, Impala, and Spark
  • Use StreamSets, Talend, Pentaho, and CDAP for real-time and batch data ingestion and processing
  • Utilize Trifacta, Alteryx, and Datameer for data wrangling and interactive data processing
  • Turbocharge Spark with Alluxio, a distributed in-memory storage platform
  • Deploy big data in the cloud using Cloudera Director
  • Perform real-time data visualization and time series analysis using Zoomdata, Apache Kudu, Impala, and Spark
  • Understand enterprise big data topics such as big data governance, metadata management, data lineage, impact analysis, and policy enforcement, and how to use Cloudera Navigator to perform common data governance tasks
  • Implement big data use cases such as big data warehousing, data warehouse optimization, Internet of Things, real-time data ingestion and analytics, complex event processing, and scalable predictive modeling
  • Study real-world big data case studies from innovative companies, including Navistar, Cerner, British Telecom, Shopzilla, Thomson Reuters, and Mastercard
Who This Book Is For

BI and big data warehouse professionals interested in gaining practical and real-world insight into next-generation big data processing and analytics using Apache Kudu, Impala, and Spark; and those who want to learn more about other advanced enterprise topics
(HTML tags aren't allowed.)

Machine Learning Applications Using Python: Cases Studies from Healthcare, Retail, and Finance
Machine Learning Applications Using Python: Cases Studies from Healthcare, Retail, and Finance
Gain practical skills in machine learning for finance, healthcare, and retail. This book uses a hands-on approach by providing case studies from each of these domains: you’ll see examples that demonstrate how to use machine learning as a tool for business enhancement. As a domain expert, you will not only discover how machine...
Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python
Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python
Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms...
Complete Guide to Open Source Big Data Stack
Complete Guide to Open Source Big Data Stack

See a Mesos-based big data stack created and the components used. You will use currently available Apache full and incubating systems. The components are introduced by example and you learn how they work together.

In the Complete Guide to Open Source Big Data Stack, the author begins by creating a private...


Machine Learning with Microsoft Technologies: Selecting the Right Architecture and Tools for Your Project
Machine Learning with Microsoft Technologies: Selecting the Right Architecture and Tools for Your Project

Know how to do machine learning with Microsoft technologies. This book teaches you to do predictive, descriptive, and prescriptive analyses with Microsoft Power BI, Azure Data Lake, SQL Server, Stream Analytics, Azure Databricks, HD Insight, and more.

The ability to analyze massive amounts of real-time data and predict...

Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition
Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition

An easy-to-follow, step-by-step guide for getting to grips with the real-world application of machine learning algorithms

Key Features

  • Explore statistics and complex mathematics for data-intensive applications
  • Discover new developments in EM algorithm, PCA, and bayesian...
Artificial Intelligence Basics: A Non-Technical Introduction
Artificial Intelligence Basics: A Non-Technical Introduction

Artificial intelligence touches nearly every part of your day. While you may initially assume that technology such as smart speakers and digital assistants are the extent of it, AI has in fact rapidly become a general-purpose technology, reverberating across industries including transportation, healthcare, financial services, and...

©2019 LearnIT (support@pdfchm.net) - Privacy Policy