Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Practical Data Wrangling: Expert techniques for transforming your raw data into a valuable source for analytics

Buy

Key Features

  • This easy-to-follow guide takes you through every step of the data wrangling process in the best possible way
  • Work with different types of datasets, and reshape the layout of your data to make it easier for analysis
  • Get simple examples and real-life data wrangling solutions for data pre-processing

Book Description

Around 80% of time in data analysis is spent on cleaning and preparing data for analysis. This is, however, an important task, and is a prerequisite to the rest of the data analysis workflow, including visualization, analysis and reporting. Python and R are considered a popular choice of tool for data analysis, and have packages that can be best used to manipulate different kinds of data, as per your requirements. This book will show you the different data wrangling techniques, and how you can leverage the power of Python and R packages to implement them.

You’ll start by understanding the data wrangling process and get a solid foundation to work with different types of data. You’ll work with different data structures and acquire and parse data from various locations. You’ll also see how to reshape the layout of data and manipulate, summarize, and join data sets. Finally, we conclude with a quick primer on accessing and processing data from databases, conducting data exploration, and storing and retrieving data quickly using databases.

The book includes practical examples on each of these points using simple and real-world data sets to give you an easier understanding. By the end of the book, you’ll have a thorough understanding of all the data wrangling concepts and how to implement them in the best possible way.

What you will learn

  • Read a csv file into python and R, and print out some statistics on the data
  • Gain knowledge of the data formats and programming structures involved in retrieving API data
  • Make effective use of regular expressions in the data wrangling process
  • Explore the tools and packages available to prepare numerical data for analysis
  • Find out how to have better control over manipulating the structure of the data
  • Create a dexterity to programmatically read, audit, correct, and shape data
  • Write and complete programs to take in, format, and output data sets

About the Author

Allan Visochek is a freelance web developer and data analyst in New Haven, Connecticut. Outside of work, Allan has a deep interest in machine learning and artificial intelligence.

Allan thoroughly enjoys teaching and sharing knowledge. After graduating from the Udacity Data Analyst Nanodegree program, he was contracted to Udacity for several months as a forum mentor and project reviewer, offering guidance to students working on data analysis projects. He has also written technical content for LearnToProgram.

Table of Contents

  1. Programming with Data
  2. An Introduction to Programming in Python
  3. Reading, Writing and Modifying Data in Python I
  4. Reading, Writing and Modifying Data in Python II
  5. Text Data and Regular expressions
  6. Cleaning Numerical Data: An Introduction To R and Rstudio
  7. Data Munging in R using Dplyr
  8. Getting data from the web
  9. Working with really large datasets
(HTML tags aren't allowed.)

Python Web Scraping: Hands-on data scraping and crawling using PyQT, Selnium, HTML and Python, 2nd Edition
Python Web Scraping: Hands-on data scraping and crawling using PyQT, Selnium, HTML and Python, 2nd Edition

Successfully scrape data from any website with the power of Python 3.x

Key Features

  • A hands-on guide to web scraping using Python with solutions to real-world problems
  • Create a number of different web scrapers in Python to extract information
  • This book...
Python: Master the Art of Design Patterns
Python: Master the Art of Design Patterns

About This Book

  • Learn all about abstract design patterns and how to implement them in Python 3
  • Understand the structural, creational, and behavioral Python design patterns
  • Get to know the context and application of design patterns to solve real-world problems in software...
SQL Primer: An Accelerated Introduction to SQL Basics
SQL Primer: An Accelerated Introduction to SQL Basics
Modern society is driven by data. Whether it is at a personal level, like a notebook containing scribbled notes; or at a countrywide level like Census data, it has permeated all our workflows. There is always a growing need to efficiently store and organize it so that meaningful information can be extracted out of raw data. ...

Implementing Cybersecurity: A Guide to the National Institute of Standards and Technology Risk Management Framework (Internal Audit and IT Audit)
Implementing Cybersecurity: A Guide to the National Institute of Standards and Technology Risk Management Framework (Internal Audit and IT Audit)

The book provides the complete strategic understanding requisite to allow a person to create and use the RMF process recommendations for risk management. This will be the case both for applications of the RMF in corporate training situations, as well as for any individual who wants to obtain specialized knowledge in organizational...

Cloud Computing and Virtualization
Cloud Computing and Virtualization

The purpose of this book is first to study cloud computing concepts, security concern in clouds and data centers, live migration and its importance for cloud computing, the role of firewalls in domains with particular focus on virtual machine (VM) migration and its security concerns. The book then tackles design, implementation of...

Python Data Science Handbook: Essential Tools for Working with Data
Python Data Science Handbook: Essential Tools for Working with Data

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib,...

©2018 LearnIT (support@pdfchm.net) - Privacy Policy