Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Practical Statistics for Data Scientists: 50 Essential Concepts

Buy

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.

Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.

With this book, you’ll learn:

  • Why exploratory data analysis is a key preliminary step in data science
  • How random sampling can reduce bias and yield a higher quality dataset, even with big data
  • How the principles of experimental design yield definitive answers to questions
  • How to use regression to estimate outcomes and detect anomalies
  • Key classification techniques for predicting which categories a record belongs to
  • Statistical machine learning methods that “learn” from data
  • Unsupervised learning methods for extracting meaning from unlabeled data
(HTML tags aren't allowed.)

Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists
Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists

Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you’ll learn techniques for extracting and transforming features—the numeric representations of raw data—into formats for machine-learning models. Each chapter guides you...

Machine Learning and Security: Protecting Systems with Data and Algorithms
Machine Learning and Security: Protecting Systems with Data and Algorithms

Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself. With this practical guide, you’ll explore ways to apply machine learning to security...

Applied Network Security
Applied Network Security

Master the art of detecting and averting advanced network security attacks and techniques

About This Book

  • Deep dive into the advanced network security attacks and techniques by leveraging tools such as Kali Linux 2, MetaSploit, Nmap, and Wireshark
  • Become an expert in cracking WiFi...

Docker for Data Science: Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server
Docker for Data Science: Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server
Learn Docker "infrastructure as code" technology to define a system for performing standard but non-trivial data tasks on medium- to large-scale data sets, using Jupyter as the master controller.

It is not uncommon for a real-world data set to fail to be easily managed. The set may not fit well into access memory or
...
Introduction to Machine Learning with R: Rigorous Mathematical Analysis
Introduction to Machine Learning with R: Rigorous Mathematical Analysis

Machine learning is an intimidating subject until you know the fundamentals. If you understand basic coding concepts, this introductory guide will help you gain a solid foundation in machine learning principles. Using the R programming language, you’ll first start to learn with regression modelling and then move into more...

TensorFlow for Deep Learning: From Linear Regression to Reinforcement Learning
TensorFlow for Deep Learning: From Linear Regression to Reinforcement Learning

Learn how to solve challenging machine learning problems with TensorFlow, Google’s revolutionary new software library for deep learning. If you have some background in basic linear algebra and calculus, this practical book introduces machine-learning fundamentals by showing you how to design systems capable of detecting objects...

©2018 LearnIT (support@pdfchm.net) - Privacy Policy