Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Reinforcement Learning of Bimanual Robot Skills (Springer Tracts in Advanced Robotics)

Buy

This book tackles all the stages and mechanisms involved in the learning of manipulation tasks by bimanual robots in unstructured settings, as it can be the task of folding clothes.

The first part describes how to build an integrated system, capable of properly handling the kinematics and dynamics of the robot along the learning process. It proposes practical enhancements to closed-loop inverse kinematics for redundant robots, a procedure to position the two arms to maximize workspace manipulability, and a dynamic model together with a disturbance observer to achieve compliant control and safe robot behavior.

In the second part, methods for robot motion learning based on movement primitives and direct policy search algorithms are presented. To improve sampling efficiency and accelerate learning without deteriorating solution quality, techniques for dimensionality reduction, for exploiting low-performing samples, and for contextualization and adaptability to changing situations are proposed.

In sum, the reader will find in this comprehensive exposition the relevant knowledge in different areas required to build a complete framework for model-free, compliant, coordinated robot motion learning.

(HTML tags aren't allowed.)

Intelligent Projects Using Python: 9 real-world AI projects leveraging machine learning and deep learning with TensorFlow and Keras
Intelligent Projects Using Python: 9 real-world AI projects leveraging machine learning and deep learning with TensorFlow and Keras

Implement machine learning and deep learning methodologies to build smart, cognitive AI projects using Python

Key Features

  • A go-to guide to help you master AI algorithms and concepts
  • 8 real-world projects tackling different challenges in healthcare, e-commerce, and...
Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python
Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python
Learn how to use TensorFlow 2.0 to build machine learning and deep learning models with complete examples. 

The book begins with introducing TensorFlow 2.0 framework and the major changes from its last release. Next, it focuses on building Supervised Machine Learning models using TensorFlow 2.0.
...
Hands-On Reinforcement Learning with Python: Master reinforcement and deep reinforcement learning using OpenAI Gym and TensorFlow
Hands-On Reinforcement Learning with Python: Master reinforcement and deep reinforcement learning using OpenAI Gym and TensorFlow

A hands-on guide enriched with examples to master deep reinforcement learning algorithms with Python

Key Features

  • Enter the world of artificial intelligence using the power of Python
  • An example-rich guide to master various RL and DRL algorithms
  • Explore...

Python Projects for Beginners: A Ten-Week Bootcamp Approach to Python Programming
Python Projects for Beginners: A Ten-Week Bootcamp Approach to Python Programming

Immerse yourself in learning Python and introductory data analytics with this book’s project-based approach. Through the structure of a ten-week coding bootcamp course, you’ll learn key concepts and gain hands-on experience through weekly projects.

Each chapter in this book is presented as a full week of...

TensorFlow 2.0 Quick Start Guide: Get up to speed with the newly introduced features of TensorFlow 2.0
TensorFlow 2.0 Quick Start Guide: Get up to speed with the newly introduced features of TensorFlow 2.0

Perform supervised and unsupervised machine learning and learn advanced techniques such as training neural networks.

Key Features

  • Train your own models for effective prediction, using high-level Keras API
  • Perform supervised and unsupervised machine learning and learn...
Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more
Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more

This practical guide will teach you how deep learning (DL) can be used to solve complex real-world problems.

Key Features

  • Explore deep reinforcement learning (RL), from the first principles to the latest algorithms
  • Evaluate high-profile RL methods, including value...
©2019 LearnIT (support@pdfchm.net) - Privacy Policy