Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Reinforcement Learning with TensorFlow: A beginner's guide to designing self-learning systems with TensorFlow and OpenAI Gym

Buy

Leverage the power of reinforcement learning techniques to develop self-learning systems using TensorFlow

Key Features

  • Explore reinforcement learning concepts and their implementation using TensorFlow
  • Discover different problem-solving methods for reinforcement learning
  • Apply reinforcement learning to autonomous driving cars, robobrokers, and more

Book Description

Reinforcement learning (RL) allows you to develop smart, quick and self-learning systems in your business surroundings. It's an effective method for training learning agents and solving a variety of problems in Artificial Intelligence - from games, self-driving cars and robots, to enterprise applications such as data center energy saving (cooling data centers) and smart warehousing solutions.

The book covers major advancements and successes achieved in deep reinforcement learning by synergizing deep neural network architectures with reinforcement learning. You'll also be introduced to the concept of reinforcement learning, its advantages and the reasons why it's gaining so much popularity. You'll explore MDPs, Monte Carlo tree searches, dynamic programming such as policy and value iteration, and temporal difference learning such as Q-learning and SARSA. You will use TensorFlow and OpenAI Gym to build simple neural network models that learn from their own actions. You will also see how reinforcement learning algorithms play a role in games, image processing and NLP.

By the end of this book, you will have gained a firm understanding of what reinforcement learning is and understand how to put your knowledge to practical use by leveraging the power of TensorFlow and OpenAI Gym.

What you will learn

  • Implement state-of-the-art reinforcement learning algorithms from the basics
  • Discover various reinforcement learning techniques such as MDP, Q Learning, and more
  • Explore the applications of reinforcement learning in advertisement, image processing, and NLP
  • Teach a reinforcement learning model to play a game using TensorFlow and OpenAI Gym
  • Understand how reinforcement learning applications are used in robotics

Who This Book Is For

If you want to get started with reinforcement learning using TensorFlow in the most practical way, this book will be a useful resource. The book assumes prior knowledge of machine learning and neural network programming concepts, as well as some understanding of the TensorFlow framework. No previous experience of reinforcement learning is required.

Table of Contents

  1. Deep Learning - Architectures and Frameworks
  2. Training Reinforcement Learning Agents Using OpenAI Gym
  3. Markov Decision Process (MDP)
  4. Policy Gradients
  5. Q-Learning & Deep Q Networks
  6. Asynchronous Methods
  7. Robo Everything - Real Strategy Gaming
  8. AlphaGo - Reinforcement Learning at its Best
  9. Reinforcement Learning in Autonomous Driving
  10. Financial Portfolio Management
  11. Reinforcement Learning in Robotics
  12. Deep Reinforcement Learning in AdTech
  13. Reinforcement Learning in Image Processing
  14. Deep Reinforcement Learning in NLP
  15. Appendix 1.Further Topics in Reinforcement Learning
(HTML tags aren't allowed.)

Success in Programming: How to Gain Recognition, Power, and Influence Through Personal Branding
Success in Programming: How to Gain Recognition, Power, and Influence Through Personal Branding

Why should you, a competent software developer or programmer, care about your own brand? After all, it’s not like you're an actor or musician.

In fact, as Success in Programming: How to Gain Recognition, Power, and Influence Through Personal Branding demonstrates in...

Hands-On Neural Networks with Keras: Design and create neural networks using deep learning and artificial intelligence principles
Hands-On Neural Networks with Keras: Design and create neural networks using deep learning and artificial intelligence principles

Your one-stop guide to learning and implementing artificial neural networks with Keras effectively

Key Features

  • Design and create neural network architectures on different domains using Keras
  • Integrate neural network models in your applications using this highly practical...
Soft Computing for Business Intelligence (Studies in Computational Intelligence)
Soft Computing for Business Intelligence (Studies in Computational Intelligence)

The book Soft Computing for Business Intelligence is the remarkable output of a program based on the idea of joint trans-disciplinary research as supported by the Eureka Iberoamerica Network and the University of Oldenburg.

It contains twenty-seven papers allocated to three sections: Soft Computing, Business...


Generative Adversarial Networks Projects: Build next-generation generative models using TensorFlow and Keras
Generative Adversarial Networks Projects: Build next-generation generative models using TensorFlow and Keras

Explore various Generative Adversarial Network architectures using the Python ecosystem

Key Features

  • Use different datasets to build advanced projects in the Generative Adversarial Network domain
  • Implement projects ranging from generating 3D shapes to a face aging...
TensorFlow for Deep Learning: From Linear Regression to Reinforcement Learning
TensorFlow for Deep Learning: From Linear Regression to Reinforcement Learning

Learn how to solve challenging machine learning problems with TensorFlow, Google’s revolutionary new software library for deep learning. If you have some background in basic linear algebra and calculus, this practical book introduces machine-learning fundamentals by showing you how to design systems capable of detecting objects...

Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition
Machine Learning Algorithms: Popular algorithms for data science and machine learning, 2nd Edition

An easy-to-follow, step-by-step guide for getting to grips with the real-world application of machine learning algorithms

Key Features

  • Explore statistics and complex mathematics for data-intensive applications
  • Discover new developments in EM algorithm, PCA, and bayesian...
©2019 LearnIT (support@pdfchm.net) - Privacy Policy