Home | Amazing | Today | Tags | Publishers | Years | Account | Search 
Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data, Second Edition

Buy

The second edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. The first edition, titled Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data, contained 17 chapters of innovative and practical statistical data mining techniques. In this second edition, renamed to reflect the increased coverage of machine-learning data mining techniques, the author has completely revised, reorganized, and repositioned the original chapters and produced 14 new chapters of creative and useful machine-learning data mining techniques. In sum, the 31 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature.

The statistical data mining methods effectively consider big data for identifying structures (variables) with the appropriate predictive power in order to yield reliable and robust large-scale statistical models and analyses. In contrast, the author's own GenIQ Model provides machine-learning solutions to common and virtually unapproachable statistical problems. GenIQ makes this possible ? its utilitarian data mining features start where statistical data mining stops.

This book contains essays offering detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. They address each methodology and assign its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.

(HTML tags aren't allowed.)

Introduction to Probability and Statistics Using R
Introduction to Probability and Statistics Using R
This is a textbook for an undergraduate course in probability and statistics. The approximate prerequisites are two or three... More > semesters of calculus and some linear algebra. Students attending the class include mathematics, engineering, and computer science majors....
The Art of Computer Programming, Volume 4, Fascicle 2: Generating All Tuples and Permutations
The Art of Computer Programming, Volume 4, Fascicle 2: Generating All Tuples and Permutations

Finally, after a wait of more than thirty-five years, the first part of Volume 4 is at last ready for publication. Check out the boxed set that brings together Volumes 1 - 4A in one elegant case, and offers the purchaser a $50 discount off the price of buying the four volumes individually.

Graphs, Networks and Algorithms (Algorithms and Computation in Mathematics)
Graphs, Networks and Algorithms (Algorithms and Computation in Mathematics)

From the reviews of the previous editions

".... The book is a first class textbook and seems to be indispensable for everybody who has to teach combinatorial optimization. It is very helpful for students, teachers, and researchers in this area. The author finds a striking synthesis of nice and interesting...


Applied Data Mining
Applied Data Mining

Data mining has witnessed substantial advances in recent decades. New research questions and practical challenges have arisen from emerging areas and applications within the various fields closely related to human daily life, e.g. social media and social networking. This book aims to bridge the gap between traditional data mining and...

Evolutionary Optimization Algorithms
Evolutionary Optimization Algorithms

A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms

Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant...

Time Series Analysis and Its Applications: With R Examples (Springer Texts in Statistics)
Time Series Analysis and Its Applications: With R Examples (Springer Texts in Statistics)

Time Series Analysis and Its Applications presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception...

©2019 LearnIT (support@pdfchm.net) - Privacy Policy